If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+10x-63=0
a = 8; b = 10; c = -63;
Δ = b2-4ac
Δ = 102-4·8·(-63)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-46}{2*8}=\frac{-56}{16} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+46}{2*8}=\frac{36}{16} =2+1/4 $
| 4p=7-3p | | -2(3-x)=5x-4(x+1) | | 2.8w–3=5w–0.8. | | 1/2(2x+8)=15 | | 2(x-1)+4x=100(x+3 | | x/3=10+ | | (5/x)-(45/x+4)+4=0 | | 8/t=5/9 | | 4+7y=8 | | 5/x-45/x+4+4=0 | | 11=4x=3 | | 4x=7x-5 | | -x/7=30 | | (x-2.5)^2+29.75=0 | | 6(5y=7=7(4y-10) | | |x-3|-3=5 | | -2y=-3y-43 | | ((1/7(3x+2)-1/5(x+4))=2 | | 2a-5=2a+8 | | -20+14m=10m+6 | | 95=6n+11 | | 1/2(12x-6)=3x+27 | | 23=2z-57 | | 0.5^(x+1)=0 | | 9j-32=31 | | 25-4r=17 | | 13x-12-4x-4=65 | | g/7+-20=-19 | | x/39=0.76 | | p=12+5(217)/14 | | x/8=-51 | | X+15+3x=35 |